E47 and Id1 Interplay in Epithelial-Mesenchymal Transition
نویسندگان
چکیده
E12/E47 proteins (encoded by E2A gene) are members of the class I basic helix-loop-helix (bHLH) transcription factors (also known as E proteins). E47 has been described as repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). We reported previously that EMT mediated by E47 in MDCK cells occurs with a concomitant overexpression of Id1 and Id3 proteins. Id proteins belong to class V of HLH factors that lack the basic domain; they dimerise with E proteins and prevent their DNA interaction, thus, acting as dominant negative of E proteins. Here, we show that E47 interacts with Id1 in E47 overexpressing MDCK cells that underwent a full EMT as well as in mesenchymal breast carcinoma and melanoma cell lines. By conducting chromatin immunoprecipitation assays we demonstrate that E47 binds directly to the endogenous E-cadherin promoter of mesenchymal MDCK-E47 cells in a complex devoid of Id1. Importantly, our data suggest that both E47 and Id1 are required to maintain the mesenchymal phenotype of MDCK-E47 cells. These data support the collaboration between E47 and Id1 in the maintenance of EMT by mechanisms independent of the dominant negative action of Id1 on E47 binding to E-cadherin promoter. Finally, the analysis of several N0 breast tumour series indicates that the expression of E47 and ID1 is significantly associated with the basal-like phenotype supporting the biological significance of the present findings.
منابع مشابه
Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis.
Several E-box-binding transcription factors regulate individual and collective cell migration and enhance the motility of epithelial cells by promoting epithelial-mesenchymal transition (EMT). Here, we characterized the role of a subset of these transcription factors and the EMT proteome in branching morphogenesis of mammary epithelial tissues using a three-dimensional organotypic culture model...
متن کاملA new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions.
Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E-cadherin expression and triggers epithelial-mesenchymal transitions. The mouse E47 factor was isolated in a one...
متن کاملThe class I bHLH factors E2-2A and E2-2B regulate EMT.
Functional loss of the cell-cell adhesion molecule E-cadherin is an essential event for epithelial-mesenchymal transition (EMT), a process that allows cell migration during embryonic development and tumour invasion. In most carcinomas, transcriptional repression has emerged as the main mechanism responsible for E-cadherin downregulation. Here, we report the identification of class I bHLH factor...
متن کاملID1 regulates U87 human cell proliferation and invasion
Despite therapeutic advances, the prognosis of patients diagnosed with malignant glioma has not improved in recent years. In particular, the molecular mechanisms that mediate glioma invasion remain poorly understood. The importance of ID1 in promoting tumor invasion and metastasis has recently emerged and a role for ID1 as a possible molecular marker of tumor aggressiveness has been proposed. T...
متن کاملTubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis
During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after i...
متن کامل